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Temperature and density extrapolations in canonical ensemble Monte Carlo simulations
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We show how to use the multiple histogram method to combine canonical ensemble Monte Carlo simula-
tions made at different temperatures and densities. The method can be applied to study systems of particles
with arbitrary interaction potential and to compute the thermodynamic properties over a range of temperatures
and densities. The calculation of the Helmholtz free energy relative to some thermodynamic reference state
enables us to study phase coexistence properties. We test the method on the Lennard-Jones fluids for which
many results are available.

PACS numbsg(s): 05.10.Ln, 05.20.Jj, 64.70.Fx

[. INTRODUCTION auxiliary tool[17,20. Our method can also be applied to the
study of solid fluid coexistenci21]. An introduction to the

Histogram and multiple-histogram methods have beerapplication of simulation techniques to the study of phase
proposed as an optimized way of analyzing Monte Carlo datgoexistence properties can be found in the book of Frenkel
[1-3]. These methods can be included in the more genera@nd Smit[22].
class of reweighting methodd]. The idea is to combine a
given set of standard Monte Carlo simulations to get im-
proved estimates of observables in a given parameter region.
A related idea is to sample a suitably chosen probability Consider a system ™ interacting particles contained in a

distribution rather than a given statistical mechanics enpox of volumeV,. For simplicity we consider a pairwise

semble. The sampling distribution is such that the configuraz y4itive interaction potential ar{aﬂ} denots a a given con-

tion space visited is typical of the interval of thermodynamiCyq ration of particle coordinates. The total potential energy
parameters of interest thus allowing the reconstruction of the

appropriate statistical mechanics ensemble. The methods ; the syaster%n in a configuration is given bgi({ri})
umbrella sampling5—7], multicanonica(8,9] and expanded = 2,j)u(Iri—r;|), where the sum runs over all pairs of par-
ensemble method<0,17 can be seen as belonging to this ticles. Uniformly expanding the system from the voluvg
class. to the volumeV changes the configuration frofn;} to {r/},

_ In this paper we show how to combine NVT Monte Carlo sych that! = (V/V,)Y?r;. The energy of the system of vol-
S|mulat|qns made at ghffgrent temperatures and vc_JIumes. OLI'Jme V in the new configuration is given b)E({F—’})
method is a generalization to volume extrapolations of the” 13- - :
multiple histogram method. We further show that the method™ >(i,hUL(V/Vo) ri—rjll. _ _
can be applied not only to systems of particles that interact We will show that it is always possible to find a setrf
through interaction potentials that have a simple scaling withvariables,C,,({r;}), with O=<n=n.—1, that depend on the
particle distance but also to those with arbitrary distance departicle coordinates. These variables can be seen as coordi-
pendence. Furthermore, as we are able to calculate relativ@ates of a column VeCtOIC?:(Co,Cl, o ,Cnc—1)- Their

free energies as a function of volume and temperature, thgnice is arbitrary provided two properties are fulfilled. First,
method can be applied to study phase coexistence propertigshould be possible to write the potential energy in terms of

[6.7]. these variables. Second, there is a known linear relation be-

Several simulation methods have been proposed to studyeen the value of the variables in the expanded system of
phase coexistence properties. In the Gibbs Monte Carlo eRjyiume V and their value for the system of volurdg:
semblg 12,13 two simulation boxes equilibrate by exchang-

ing particles and volume and the system separates into two
phases, each one located in one of the boxes. Grand canoni- Cdrihy=M-Cdr}), )

cal ensemble simulations with multiple histogramming have

been used to study critical properties and finite-size scalin%{/I . o o

in fluid systemg14—16. However, due to the low probabil- M being a square matrix with coefficients that depend only
ity of particle exchanges or insertions at high densities thesen V and Vo, _
methods cannot be used to study dense phases. For suchFor example, for the Lennard-Jones potentialr)
systems special methods have been suggested that rely on thee[ (o/r)*?— (a/r)®], the vectorC can be chosen with
calculation of the absolute free energies of the two phasesnly two componentsC, andC;

[17]. Recently an alternative method based on Gibbs-Duhem

integration was proposed and the concept of pseudoen-

sembles was introducdd8-20. For all of these methods CO({Fi}): 2
the use of the multiple histogram technique can be a valuable @)

II. METHOD

12

: (2a)

o
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(2b)  at inverse temperaturg; and volumeV;, 1<i<R. Each

o ) 6 Suppose that we perform several Monte Carlo simulations
simulation provides an estimate of the density of states

1({r|} 2

rij
satisfying the two properties mentioned above.
For an arbitrary potential it may not be possible to find Q[c(V Vi 5c(V) exp(Bi {E[c (V) ]—f}) ————= [ ')]
variablesC, with a given volume scaling as in the Lennard- M;
Jones case. However, there is always a method based on (9)

volume expansions that we describe next. We define the co-
efficient C, from the volume derivatives of Where E[c(V))] is the potential energy of the system,

E[(V/Vo)l’s{Fi}]: hi[c(V;)] is the histogram of the variable®,, measured in
the simulationi, 5c(V,) is the histogram bin sizé\l; is the
{a} (J“E[(V/VO)1’3{ﬂ}]) number of measures arfg is the Helmholtz free energy at
ri})= .
V

; 3) inverse temperaturg; and volumeV;. The values off; are
NV o not known by now but will be self-consistently determined
later.
The two properties are fulfilled since the energy of a given We use(8) to relate the density of states at volueo

configuration isE({r;})=Co({r;}) and the series expansion the density of states estimated at the simulation volume by
the above equation,

I({ } |- n N
N - \%
Cnllrirh)= En = VYO @ v sv=[y)
i
provide the linear relatiofil). However the vecto€ has an hi[c ( |)]
infinite number of components. In practical numerical work X exp( B{E[C(V))]—fi}) ————
the above expansion needs to be stopped at a sufficiently
high-order. As it will be seen below the approximation intro- (10)

duced can be controlled either by increasing the order of the
approximation or by combining simulations at closer densi-/ N€ estimates of the density of states given by each oRthe
ties. simulations are now combind@],
We denote the density of states with variab@gr/}) in N
some neighborhood af(V) for a system of volume V, by QLe(V),V] sc(V)= E Pi (VI)
Q[E(V),V]. This quantity can be obtained from a phase
space integration, hi[c (V)]

X expl B{E[C(V))]—fi}) ————
Q[c(V),V]= fvdfi . drgdCHr H—c(V)]l. (5) (11)

_ _ _ ., - assigning to each of them a weight. The normalized
Changing the variables of integration; =(V/Vo)™i (SR p,=1) weights are obtained from the condition of
and noting relation(1) between the vectoC({r{}) and minimization of the statistical uncertainty on the density of

C({r;}) we can write states,
N VAN N 82Q[c(V), V=02 c(V),V]-Q[c(V),VIZ. (12
QL&) V]= _) j dr,. - diy [c(V).V] [c(V),V]=Q[c(V),V] (12
0 The number of measures in each bin of the histogram is a
RN 2 random variable. Neglecting the correlations between the
X SMICHriH) ~c(Vo)D, C measures and using the independence of the simulations we
where have[23],
C(V)=M-E(Vo). (7 hile(Vplhe(Vpl-hle(VIhe(Vpl=h[c(Vi)1s,; -
(13

Using the property of the Dirad function, S(M[C({r;})

- S - : The result for the weights is
—c(V)])=8(C({r;}) —c(V))/|M|, where|M| is the deter-

minant of the matriXM, we see that the densities of states at . R M, N
different volumes are related by pi t=exp B{E[c(V)]—f}) Z (V)(_)
. - AR - -
Q[c(V),V] dc(V)= V—) Q[c(Vy),Vo] dc(Vy), (8) xexp(—BIE[c(V)]—fi}). (14)
0

R R The partition function at inverse temperaty#eand volume
with c(V) andc(V,) related by Eq(7). V is thus
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R
Z(BNV)=2, E

c(v) 1=

hi[c(Vi)] exp(—BE[c(V)])

XR

21 M(Vi /)N exp(— BHE[C(V))]

—fih)
(15
and the canonical average of any functigic(V)] is

_ 1
(O=z8v)

R f[c(V)] hi[c(V)] exp— BE[C(V)])

XY X = ,

o(v) 1= 2, MV 1V) Nexp(— B{ELE(V)] - T1})

(16)

where 2y is @ sum over bins in the multidimensional
space.

For the expansiort4), the system pressur®(g,V), is
obtained directly fronC;:

N
—(Cy). (17

PIBV)= 5y

TEMPERATURE AND DENSITY EXTRAPOLATIONS IN . ..
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FIG. 1. Relative Helmholtz free energy as a function of volume
per particle at four different temperaturé$=1.0, 1.15, 1.3, and
1.45. The results obtained from the two simulation sets at tempera-
tures T§ =1.15 andT3 =1.3 are plotted and they are not distin-
guishable. We also show the double tangent straight lineTfor
=1.15.

Application of our method to rigid molecular systefi2¢]
is also possible. The expansion coefficie@sare computed
by scaling the center of mass coordinates of the molecules
while keeping the intramolecular coordinates fixed.

Ill. APPLICATION TO THE LENNARD-JONES FLUID

We measure values & every 10 MCSKN and the simu-

It is clear that in the actual calculations there is no need tqation lengths were 0 MCS/N. The value of the cut-off

compute the histograni23]. Denoting byc'J the measure
j(1=<j=<M,) in the simulation number we have

1
Z(B,V)

X.ZZ

(f)=
fLe™ (V) Jexp — BE["(V)])

R

2, Mi(Vi V) Nexp( — BELCH (V)] fi})

(18)

)

where

Z(B.\V)

M;

exp — BE[c"(V)])

M =

R

lZl My (V, /V)Nexp(— B{ELC(V))]—f})

=1 j=1

(19

One should remark that in the above expression the valuetﬁe |

radius was always equal to half the side of the simulation
box. Standard long range corrections were added to the mea-
sured values at the end of the simulation.

We first considered the choid¢@) for the vectorC. Two
sets of simulations, with 108 particles, were done at two
reduced temperature$; =1.15, andT3 =1.3. For the first
temperature we made 40 simulations at equally spaced re-
duced densities: 0.62p* <0.8. For the second temperature
we made simulations at densitigg =0.02< 1.1 1, 1<i
<40.

Every pair of simulations close in density were combined
using the proposed method to obtain results for densities in
between the two simulations and for a given range of tem-
peratures(above and below the simulation temperajure
From the free energy values obtained we built the volume
and temperature dependence of the free energy. In Fig. 1 we
show the free energy as a function of volume per particle at
four different temperature$* =1.0, 1.15, 1.3, and 1.45. In
this figure we also compare the extrapolations obtained from
each of the two sets of simulations madeTgt=1.15 and
T3 =1.3. The curves from these two simulations are nearly
coincident and they are not distinguishable in the figure. For
=1.15 we also show the common tangent straight line at
iquid and gas coexisting phases. The double tangent

c'J(V)), with I =i are measured while the corresponding co-construction allows us to find the volumes of the coexisting
efficients withl #i as well asc/(V) are computed from the phases at each temperature. A new set of simulations

measured values using ET). The free energie§; are self-
consistently  obtained from the  conditions f;

= —ﬂi’lln Z(B:,V,) and by settingf,=0. Thus, we are able

with 256 particles atT*=1.3 and densitiesp;=0.1
X 1.04771, 1<i=<40 was also done.

In Fig. 2 we show the phase diagram computed from each

to compute free energies relative to some thermodynamiset of simulations. In order to ascertain the usefulness of

stateB;, V;.

volume expansion metho) we also made simulations
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FIG. 2. Liquid-gas pha_lse_ dlagr_am OT the three dimensional FIG. 3. Convergence of the free energy with an increasing num-
Lennard-Jones model. Solid “Te: Simulation temperalifte-1.3 o1 o coefficients in the expansion based in &). Results with 1
and 10*8 particles; dashed lin€” =1.15 and 108 particles; dotted 1, g ¢oefficients correspond, respectively, to long-dashed, dot
line: T*=1.3 and 256 particles; circles and triangles are Gibbsyagheq, dot-dot-dashed, short-dashed, dotted, and solid curves. The
Ensemble results from refereng#2] with 500 particles and 300 ¢,1yes obtained with 4, 5, and 6 coefficients are nearly coincident.
particles, respectively.

erties. We show test bed results on the three-dimensional

where the variables;,, 0=n=5, were measured. This set Lennard-Jones system which confirm that the method works
of simulations was done for a system of 108 particles awvell and that the volume expansion scheme based on equa-
T*=1.3 and at the same densities chosen before. In Fig. #on (4) can be used with a good control of the approxima-
we show the convergence of the results for the relative freéions involved. Calculation of relative Helmholtz free energy
energy as a function of volume for a temperatife=1.15  coupled with the double tangent construction allows an effi-
as we include an increasing number of coefficients in th&i€nt determination of the phase diagram. The method is
expansion(4). The curves obtained with 4, 5, and 6 coeffi- general and can be ap_plled_to interaction potentials that do
cients are nearly coincident and agree with results obtaine®t Nave a simple scaling with system volume.
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