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Temperature and density extrapolations in canonical ensemble Monte Carlo simulations

A. L. Ferreira and M. A. Barroso
Universidade de Aveiro, Departmento de Fı´sica, 3810-193 Aveiro, Portugal

~Received 14 June 1999!

We show how to use the multiple histogram method to combine canonical ensemble Monte Carlo simula-
tions made at different temperatures and densities. The method can be applied to study systems of particles
with arbitrary interaction potential and to compute the thermodynamic properties over a range of temperatures
and densities. The calculation of the Helmholtz free energy relative to some thermodynamic reference state
enables us to study phase coexistence properties. We test the method on the Lennard-Jones fluids for which
many results are available.

PACS number~s!: 05.10.Ln, 05.20.Jj, 64.70.Fx
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I. INTRODUCTION

Histogram and multiple-histogram methods have be
proposed as an optimized way of analyzing Monte Carlo d
@1–3#. These methods can be included in the more gen
class of reweighting methods@4#. The idea is to combine a
given set of standard Monte Carlo simulations to get i
proved estimates of observables in a given parameter reg
A related idea is to sample a suitably chosen probab
distribution rather than a given statistical mechanics
semble. The sampling distribution is such that the configu
tion space visited is typical of the interval of thermodynam
parameters of interest thus allowing the reconstruction of
appropriate statistical mechanics ensemble. The method
umbrella sampling@5–7#, multicanonical@8,9# and expanded
ensemble methods@10,11# can be seen as belonging to th
class.

In this paper we show how to combine NVT Monte Car
simulations made at different temperatures and volumes.
method is a generalization to volume extrapolations of
multiple histogram method. We further show that the meth
can be applied not only to systems of particles that inte
through interaction potentials that have a simple scaling w
particle distance but also to those with arbitrary distance
pendence. Furthermore, as we are able to calculate rel
free energies as a function of volume and temperature,
method can be applied to study phase coexistence prope
@6,7#.

Several simulation methods have been proposed to s
phase coexistence properties. In the Gibbs Monte Carlo
semble@12,13# two simulation boxes equilibrate by exchan
ing particles and volume and the system separates into
phases, each one located in one of the boxes. Grand ca
cal ensemble simulations with multiple histogramming ha
been used to study critical properties and finite-size sca
in fluid systems@14–16#. However, due to the low probabil
ity of particle exchanges or insertions at high densities th
methods cannot be used to study dense phases. For
systems special methods have been suggested that rely o
calculation of the absolute free energies of the two pha
@17#. Recently an alternative method based on Gibbs-Duh
integration was proposed and the concept of pseudo
sembles was introduced@18–20#. For all of these methods
the use of the multiple histogram technique can be a valu
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auxiliary tool @17,20#. Our method can also be applied to th
study of solid fluid coexistence@21#. An introduction to the
application of simulation techniques to the study of pha
coexistence properties can be found in the book of Fren
and Smit@22#.

II. METHOD

Consider a system ofN interacting particles contained in
box of volumeV0. For simplicity we consider a pairwise
additive interaction potential and$rW i% denotes a a given con-
figuration of particle coordinates. The total potential ener
of the system in a configuration is given byE($rW i%)
5(^ i , j &u(urW i2rW j u), where the sum runs over all pairs of pa
ticles. Uniformly expanding the system from the volumeV0

to the volumeV changes the configuration from$rW i% to $rW i8%,

such thatrW i85(V/V0)1/3rW i . The energy of the system of vol

ume V in the new configuration is given byE($rW i8%)

5(^ i , j &u@(V/V0)1/3urW i2rW j u#.
We will show that it is always possible to find a set ofnc

variables,Cn($rW i%), with 0<n<nc21, that depend on the
particle coordinates. These variables can be seen as co
nates of a column vector,CW 5(C0 ,C1 , . . . ,Cnc21). Their
choice is arbitrary provided two properties are fulfilled. Fir
it should be possible to write the potential energy in terms
these variables. Second, there is a known linear relation
tween the value of the variables in the expanded system
volume V and their value for the system of volumeV0:

CW ~$rW i8%!5M•CW ~$rW%!, ~1!

M being a square matrix with coefficients that depend o
on V andV0.

For example, for the Lennard-Jones potential,u(r )
54e@(s/r )122(s/r )6#, the vectorCW can be chosen with
only two components,C0 andC1

C0~$rW i%!5(
^ i , j &

S s

r i j
D 12

, ~2a!
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C1~$rW i%!5(
^ i , j &

S s

r i j
D 6

, ~2b!

satisfying the two properties mentioned above.
For an arbitrary potential it may not be possible to fi

variablesCn with a given volume scaling as in the Lennar
Jones case. However, there is always a method base
volume expansions that we describe next. We define the
efficient Cn from the volume derivatives o
E@(V/V0)1/3$rW i%#:

Cn~$rW i%!5S ]nE@~V/V0!1/3$rW i%#

]Vn D
V0

. ~3!

The two properties are fulfilled since the energy of a giv
configuration isE($rW i%)5C0($rW i%) and the series expansio

Cn~$rW i 8%!5(
l 5n

`
Cl~$rW i%!

~ l 2n!!
~V2V0! l 2n, ~4!

provide the linear relation~1!. However the vectorCW has an
infinite number of components. In practical numerical wo
the above expansion needs to be stopped at a sufficie
high-order. As it will be seen below the approximation intr
duced can be controlled either by increasing the order of
approximation or by combining simulations at closer den
ties.

We denote the density of states with variablesCW ($rW i8%) in

some neighborhood ofcW (V) for a system of volume V, by
V@cW (V),V#. This quantity can be obtained from a pha
space integration,

V@cW~V!,V#5E
V
drW18 . . . drWN8 d@CW ~$rW i8%!2cW~V!#. ~5!

Changing the variables of integration,rW i85(V/V0)1/3rW i

and noting relation~1! between the vectorCW ($rW i8%) and

C($rW i%) we can write

V@cW~V!,V#5S V

V0
D NE

V0

drW1•••drWN

3d~M @CW ~$rW i%!2cW~V0!# !, ~6!

where

cW~V!5M•cW~V0!. ~7!

Using the property of the Diracd function, d(M @CW ($rW i%)
2cW (V)#)5d(CW ($rW i%)2cW (V))/uM u, where uM u is the deter-
minant of the matrixM , we see that the densities of states
different volumes are related by

V@cW~V!,V# dcW~V!5S V

V0
D N

V@cW~V0!,V0# dcW~V0!, ~8!

with cW (V) andcW (V0) related by Eq.~7!.
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Suppose that we perform several Monte Carlo simulati
at inverse temperatureb i and volumeVi , 1< i<R. Each
simulation provides an estimate of the density of states

V@cW~Vi !,Vi # dcW~Vi !'exp~b i$E@cW~Vi !#2 f i%!
hi@cW~Vi !#

Mi
,

~9!

where E@cW (Vi)# is the potential energy of the system
hi@cW (Vi)# is the histogram of the variablesCn measured in
the simulationi, dcW (Vi) is the histogram bin size,Mi is the
number of measures andf i is the Helmholtz free energy a
inverse temperatureb i and volumeVi . The values off i are
not known by now but will be self-consistently determine
later.

We use~8! to relate the density of states at volumeV to
the density of states estimated at the simulation volume
the above equation,

V@cW~V!,V# dcW~V!'S V

Vi
D N

3exp~b i$E@cW~Vi !#2 f i%!
hi@cW~Vi !#

Mi
.

~10!

The estimates of the density of states given by each of thR
simulations are now combined@2#,

V@cW~V!,V# dcW~V!5 (
i 51,R

pi S V

Vi
D N

3exp~b i$E@cW~Vi !#2 f i%!
hi@cW~Vi !#

Mi
,

~11!

assigning to each of them a weightpi . The normalized
(( i 51

R pi51) weights are obtained from the condition
minimization of the statistical uncertainty on the density
states,

d2V@cW~V!,V#5V2@cW~V!,V#2V@cW~V!,V#2. ~12!

The number of measures in each bin of the histogram
random variable. Neglecting the correlations between
measures and using the independence of the simulation
have@23#,

hi@cW~Vi !#hj@cW~Vj !#2hi@cW~Vi !#hj@cW~Vj !#'hi@cW~Vi !#d i , j .

~13!

The result for the weights is

pi
215exp~b i$E@cW~Vi !#2 f i%! (

l 51

R S Ml

Mi
D S Vl

Vi
D N

3exp~2b l$E@cW~Vl !#2 f l%!. ~14!

The partition function at inverse temperatureb and volume
V is thus
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Z~b,V!5 (
cW (V)

(
i 51

R

3
hi@cW~Vi !# exp~2bE@cW~V!# !

(
l 51

R

Ml~Vl /V!N exp~2b l$E@cW~Vl !#2 f l%!

,

~15!

and the canonical average of any functionf @cW (V)# is

^ f &5
1

Z~b,V!

3 (
cW (V)

(
i 51

R
f @cW~V!# hi@cW~Vi !# exp~2bE@cW~V!# !

(
l 51

R

Ml~Vl /V!Nexp~2b l$E@cW~Vl !#2 f l%!

,

~16!

where (cW (V) is a sum over bins in the multidimensionalcW
space.

For the expansion~4!, the system pressure,P(b,V), is
obtained directly fromC1:

P~b,V!5
N

bV
2^C1& . ~17!

It is clear that in the actual calculations there is no need
compute the histograms@23#. Denoting bycW i , j the measure
j (1< j <Mi) in the simulation numberi we have

^ f &5
1

Z~b,V!

3(
i 51

R

(
j 51

Mi f @cW i , j~V!#exp~2bE@cW i , j~V!# !

(
l 51

R

Ml~Vl /V!Nexp~2b l$E@cW i , j~Vl !#2 f l%!

,

~18!

where

Z~b,V!

5(
i 51

R

(
j 51

Mi exp~2bE@cW i , j~V!# !

(
l 51

R

Ml~Vl /V!Nexp~2b l$E@cW i , j~Vl !#2 f l%!

.

~19!

One should remark that in the above expression the va
cW i , j (Vl), with l 5 i are measured while the corresponding c
efficients withlÞ i as well ascW i , j (V) are computed from the
measured values using Eq.~7!. The free energiesf i are self-
consistently obtained from the conditions f i

52b i
21ln Z(bi ,Vi) and by settingf 150. Thus, we are able

to compute free energies relative to some thermodyna
stateb1 , V1.
o
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-
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Application of our method to rigid molecular systems@24#
is also possible. The expansion coefficients,Cn are computed
by scaling the center of mass coordinates of the molec
while keeping the intramolecular coordinates fixed.

III. APPLICATION TO THE LENNARD-JONES FLUID

We measure values ofCW every 10 MCS/N and the simu-
lation lengths were 105 MCS/N. The value of the cut-off
radius was always equal to half the side of the simulat
box. Standard long range corrections were added to the m
sured values at the end of the simulation.

We first considered the choice~2! for the vectorCW . Two
sets of simulations, with 108 particles, were done at t
reduced temperatures,T1* 51.15, andT2* 51.3. For the first
temperature we made 40 simulations at equally spaced
duced densities: 0.02<r* <0.8. For the second temperatu
we made simulations at densitiesr i* 50.0231.1i 21, 1< i
<40.

Every pair of simulations close in density were combin
using the proposed method to obtain results for densitie
between the two simulations and for a given range of te
peratures~above and below the simulation temperatur!.
From the free energy values obtained we built the volu
and temperature dependence of the free energy. In Fig. 1
show the free energy as a function of volume per particle
four different temperaturesT* 51.0, 1.15, 1.3, and 1.45. In
this figure we also compare the extrapolations obtained fr
each of the two sets of simulations made atT1* 51.15 and
T2* 51.3. The curves from these two simulations are nea
coincident and they are not distinguishable in the figure.
T* 51.15 we also show the common tangent straight line
the liquid and gas coexisting phases. The double tang
construction allows us to find the volumes of the coexist
phases at each temperature. A new set of simulati
with 256 particles at T* 51.3 and densitiesr i* 50.1
31.047i 21, 1< i<40 was also done.

In Fig. 2 we show the phase diagram computed from e
set of simulations. In order to ascertain the usefulness
volume expansion method~4! we also made simulation

FIG. 1. Relative Helmholtz free energy as a function of volum
per particle at four different temperaturesT* 51.0, 1.15, 1.3, and
1.45. The results obtained from the two simulation sets at temp
tures T1* 51.15 andT2* 51.3 are plotted and they are not distin
guishable. We also show the double tangent straight line forT*
51.15.
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where the variables,Cn , 0<n<5, were measured. This se
of simulations was done for a system of 108 particles
T* 51.3 and at the same densities chosen before. In Fi
we show the convergence of the results for the relative
energy as a function of volume for a temperatureT* 51.15
as we include an increasing number of coefficients in
expansion~4!. The curves obtained with 4, 5, and 6 coef
cients are nearly coincident and agree with results obta
from the choice based on Eq.~2!.

IV. CONCLUSIONS

We have proposed a method which allows simultane
extrapolations in volume and temperature based on the m
tiple histogram method. An arbitrary number of Monte Ca
simulations made in the canonical ensemble can be c
bined providing improved estimates of thermodynamic pr

FIG. 2. Liquid-gas phase diagram of the three dimensio
Lennard-Jones model. Solid line: Simulation temperatureT* 51.3
and 108 particles; dashed line:T* 51.15 and 108 particles; dotte
line: T* 51.3 and 256 particles; circles and triangles are Gib
Ensemble results from reference@12# with 500 particles and 300
particles, respectively.
er
.

t
3
e

e

d

s
l-

-
-

erties. We show test bed results on the three-dimensio
Lennard-Jones system which confirm that the method wo
well and that the volume expansion scheme based on e
tion ~4! can be used with a good control of the approxim
tions involved. Calculation of relative Helmholtz free ener
coupled with the double tangent construction allows an e
cient determination of the phase diagram. The method
general and can be applied to interaction potentials tha
not have a simple scaling with system volume.
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FIG. 3. Convergence of the free energy with an increasing nu
ber of coefficients in the expansion based in Eq.~4!. Results with 1
to 6 coefficients correspond, respectively, to long-dashed,
dashed, dot-dot-dashed, short-dashed, dotted, and solid curves
curves obtained with 4, 5, and 6 coefficients are nearly coincid
ev.
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